Step 1: Fill in Highlighted areas

Test Pit Excavation date:	

	Applicant Use		Inspector Use	
Depth (m)	Soil Type	"T" Time	Soil Type	"T" Time
0 - 0.3				
0.3 - 0.6				
0.6 - 0.9				
0.9 - 1.2				
1.2 - 1.5				
1.5 +				

Reference chart for common soil types:

helefelice chart for common son types.		
Soil Type (Unified Soil Classification)	Percolation Time,	Comment
Coarse Grained with more than 50%	T – mins/cm	
larger than #200		
GM – Silty gravels, gravel-sand-silt	4 – 12	Permeable depending
mixtures		on amount of silt
GC - Clayey gravels, gravel-sand-clay	12 – 50	T time depends on clay
mixtures		content
SM – Silty sands, sand-silt mixtures	8 – 20	Medium to low
		permeability
SC – Clayey sands, sand-clay mixtures	12 – 50	Medium to low
		permeability depending
		on clay content

Sewage System Design Height: 1.5m – Ground Water Table or bedrock depth =	(Minimum raised height of bed)
Water Supply:	
☐ Drilled Well (with 6m casing depth min.)	
☐ Dug Well	
□ Other:	

Test Pit Inspection Report

Date of Inspection:	Inspector:
Weather:	Percolation Test Required:
Design T:	Grain Size Analysis Required:
Depth to bedrock:	
Depth to GWT:	

Step 2: Fill in Highlighted Areas

Fixture	Total Count	Units Per	Fixture Units	
Bathtub		1.5	=	
Shower (1 Head)		1.5	=	
Shower (2-3 Heads)		3	=	
Lavatory		1.5	=	
Water Closet		4	=	
Bathroom Group (see note)		6	=	
Kitchen Sink		1.5	=	
Garburator (see note)			=	
Other Sinks		1.5	=	
Dishwasher (see note)		1	=	
Floor Drain (see note)		2	=	
Clothes Washer		1.5	=	
Other			=	
		Total:		

Notes:

Bathroom Group: A group consisting of exactly one shower (1 head), one lavatory, and one flush tank water closet. This would usually add up to 7, but a reduction is provided.

Garburator: A domestic style garbage disposal is permitted with no additional fixture load. Commercial style is a fixture load of 3.

Dishwasher: Only include dishwashers that are not connected to the domestic sink.

Floor Drain: This only includes floor drains which connect to the sanitary sewage system.

Step 3: Fill in Highlighted Areas

Existing Bedrooms:	
New Bedrooms:	
Total Bedrooms:	

Note: Include Sleeping Cabins

Existing Area (m²):	
Proposed Area (m²):	
Total Area (m²):	

Note: Exclude basement area

Step 4a: Calculate Total Daily Design Flow for Dwellings

Dwellings:	Volume
1 bedroom dwelling	750 L
2 bedroom dwelling	1100 L
3 bedroom dwelling	1600 L
4 bedroom dwelling	2000 L
5 bedroom dwelling	2500 L

Additional Flow for:	Volume
i) Each bedroom over 5	500 L
ii) a) each 10m ² (or part of it) over 200m ² up to 400m ²	100 L
b) each 10m ² (or part of it) over 400m ² up to 600m ²	75 L
c) each 10m ² (or part of it) over 600m ²	50 L
iii) each fixture unit over 20 fixture units	50 L

Base (# of Bedrooms):
Additional Flow:L
Total Daily Flow (Q):L
Step 4b: Calculate Total Daily Design Flow for Non-Dwellings
Occupancy Type:
Loading Criteria:
Total Daily Flow (Q):L
Step 5: Calculate Tank Size (Class 4 System)
Dwellings: Total Daily Flow (Q) x 2 =L
Non-Dwellings: Total Daily Flow (Q) x 3 =L
Note: Minimum tank size 3600L
Proposed Tank Size:L

Step 6: Calculate Filter Bed Size
If Q is 3000L or less:
$Q / 75 = \underline{\qquad} m^2$
If Q is more than 3000 L:
$Q / 50 = (\underline{\hspace{1cm}} m^2 / 2 \text{ beds}) = \underline{\hspace{1cm}} m^2 \text{ per bed}$
If Treatment Unit is proposed:
$Q / \underline{\hspace{1cm}} = \underline{\hspace{1cm}} m^2$
Extended Contact Area:
$Q \times T / 850 =m^2$
Step 7: Acknowledgement of Overhead Conductors
As per 3.1.19.1. of the Ontario Building Code,
3.1.19.1 Clearances to Buildings (A sewage system is defined as a building)
(1) A building shall not be located beneath existing above ground electrical conductors.
(2) The horizontal clearance measured from the maximum conductor swing to the <i>building</i> , including balconies, fire escapes, flat roofs or other accessible projections beyond the face of the <i>building</i> , shall,
(a) be not less than 1 m, for electrical conductors carrying voltages 750 V or less, except where necessary to connect to the electrical wiring of the <i>building</i> ,
(b) be not less than 3 m, for electrical conductors carrying voltages greater than 750 V but not exceeding 46 kV,
(c) be not less than 3.7 m, for electrical conductors carrying voltages greater than 46 kV but not exceeding 69 kV, or
(d) conform to the requirements of CAN/CSA-C22.3 No.1, "Overhead Systems", for electrical conductors carrying voltages greater than 69 kV.
Signature of Applicant: Date: